Sharing Infrastructure:

Climate Monitoring and Disaster Warning Using SMART Subsea Cables

Bruce Howe

ITU/WMO/IOC Joint Task Force and University of Hawaii at Manoa

TICAL2019

Cancun, Mexico 2-4 September 2019

Outline

- Motivation
 - Climate
 - Disasters
- SMART cables
- R & E Networks
- Sharing infrastructure
- Concluding remarks

WE HAVE ONLY OURSELVES TO THANK

INVERSAL JOLICA

Some slides courtesy of Chris Fields, Stanford, 2018

Climate – temperature vs cumulative CO₂

Declining Sea Ice Extent and Thickness

Affects global thermohaline circulation

Known Unknowns?

The Great Greenland Meltdown As algae, detritus, and meltwater darken Greenland's ice, it is shrinking ever faster

E. Kintisch, Science, 23 February 2017

∑small = BIG

Subglacial water

5.

→Sea Level

Antarctica too – on all edges and interior Nansen Ice Shelf

Kingslake, Nature, 2017 Wong Sang Lee/Korea Polar Research Institute

Climate – Antarctica

Sea level rise - Not uniform

Sea level rise + ocean heat content

Global 3.2 mm/y 2100: 8 mm/s, 1 m

-10 -5 0 5 10 Mean Sea Level Trend

Ocean Temperature water expanding 10s of mK / decade > 4000 m depth

Rotterdam

Coastal Ocean Changes in Latin America

Generalized beach erosion due to

Urban areas affected by flooding

Infrastructures affected below 1 m

>6mm vr⁻¹ in extreme coastal flooding

Erosion due to beach rotation

Possible sea ports affected for

>40% of change over the last 60 years in the

Changes in potential sediment transport rate

navigation due to increase in wave heights

Reduction in the reliability of coastal structures

100-year total sea level (excluding hurricanes)

(regional scale)

Flooding

Beach erosion

Sea ports

0

sea level rise from 0.16 to 0.3 m yr⁻¹

(a) Coastal impacts

Rising sea levels threaten large coastal populations

Contaminate aquifers, erode, inundate low areas, storm surge, etc.

> MesoAmerican reef and islands low-lying, eroding, effects on marine life coral bleaching, ocean acidification

IPCC

An example

- How will vegetation change over the next century, given various green house gas trajectories – Representative Concentration Pathway (RCP)?
- Disturbed fraction of vegetation across South America simulated by the HadGEM2-ES Earth System Model, at 1860, 2005, and four future scenarios at 2100:
 - RCP2.6 high mitigation
 - RCP4.5 reforestation mitigation
 - RCP6.0 near-zero deforestation
 - RCP8.5 high emissions, agriculture

0.00.10.20.30.40.50.60.70.80.91.0

Tsunamis

	Place	Year	Mag	H (m)	Deaths
	<mark>Valdivia, Chile</mark>	<mark>1960</mark>	<mark>9.5</mark>	<mark>25</mark>	<mark>6000</mark>
	Alaska, USA	1964	9.2	30	132
	Mindinao, Philippines	1976	7.9	9	7,800
	<mark>Tumaco, Columbia</mark>	<mark>1979</mark>	<mark>8.1</mark>	<mark>6</mark>	<mark>350</mark>
	Hokkaido, Japan	1993	7.8	30	250
	Papua New Guinea	1998	7.1	15	2200
	Sumatra, Indonesia	2004	9.2	33	230,000
	Solomon Island	2007	8.1	12	52
	Samoa	2009	8.1	14	189
	<mark>Maule, Chile</mark>	<mark>2010</mark>	<mark>8.8</mark>	<mark>3</mark>	<mark>525</mark>
	Tohoku, Japan	2011	9.0	10	19,000
	Palu, Indonesia	2018	7.5	7	~2000?

DART – tsunami warning buoys 7 August not working: Global: 22/59 LAC: 9/17

Chile 1960, 2010

Outline

- Motivation
 - Climate
 - Disasters
- SMART cables
- R & E Networks
- Sharing infrastructure
- Concluding remarks

SMART Cables - Basic Concepts

Climate, Oceans, Sea Level Earthquakes, Tsunamis Global array

SMART cables: first order addition to the ocean-earth observing system, with unique contributions that will strengthen and complement satellite and in-situ systems

https://www.itu.int/en/ITU-T/climatechange/task-force-sc/Pages/default.aspx

- Telecom + science, shared infrastructure, \$ ↓
- Cable repeaters host sensors, not to interfere
- Potential: global spanning, trans-ocean, 1+ Gm ~10,000+ repeaters (~100 km) 10-25 year refresh cycle
- Initially: bottom pressure, temperature and acceleration; supplement later (fiber sensing...)

John You, Nature, 2010 – Harnessing telecoms cables for science

SMART Cable Initiative led by UN ITU-WMO-IOC

Joint Task Force (JTF)

150 Members from 90 organizations

- Raise awareness, educate and publicize, workshops
- Search out the funds and potential investors

- Collaborate for a general solution that can be tailored to specific deployments
- Educate governments to facilitate permits and funding, and to utilize new data
- Link to global initiatives, e.g., GOOS, DOOS, JCOMM and other international agencies
- Facilitate implementation

Endorsed by JCOMM, DBCP, PTWS, POGO

The scientific and societal case for the integration of environmental sensors ScinuteatSoc Sci Comm

Strategy Rhett Butler

Engineering Peter Phibbs

https://www.itu.int/en/ITU-T/climatechange/task-force-sc/Pages/default.aspx

Better observe the ocean Flywheel of Climate, Source of Hazards

More Sensors

A global network of ocean floor observation stations

Less Money

Harness 3rd party investment to save millions in deployment costs

Climate change – humanity's greatest existential threat Adding sensors for climate and disaster monitoring SDG 13 Societal and environmental issues:

- Climate
- SDG 14
- Ocean
- Sendai Paris

- Climate change ocean temperature and circulation direct impact on societies, short and long term
- -Sea level rise hazard for coasts, island, cities
- Disaster warning tsunami and earthquake monitoring throughout ocean basins and coastal margins

Global

Regional

Local

Tools

Temp and Pressure (x,y,t) along route

Global meridional overturning circulation – climate

Flow high to low pressure

Tony Song, JPL/CalTech

Tsunami – pressure (x,y,t)

Movie Color lines For each sensor Pressure / Tsunami wave vs time

SMART Cables for seismology

- Better sampling with SMART cables
- Increased global coverage -> reduced location uncertainties, better magnitude calculations, may provide reduced detection thresholds.

Current array (with 2 sources) sparsely samples the crust and upper mantle.

Rays to SMART Cable sensors provide improved coverage over large areas.

Additional sampling with SMART cables in Pacific, 20 y earthquake sources **Modeling work continuing** – P and S waves, ...

N. Ranasinghe, C. Rowe et al., Enhanced global seismic resolution using transoceanic SMART cables, Seismol. Res. Lett., 2017.

Existing tech components

- Dedicated cable systems
 - Existing and proven:
 - S-Net, Sanriku
 - DONET, perhaps NEPTUNE, OOI-RCA (high power, ROV)

- N-Net new
- Smart
 Smart

SMART Repeaters

Costs

- Plug and play science systems like NEPTUNE-Canada, US OOI-RCA, DONET very expensive, based on ROV use
- Dedicated single purpose EW systems like Snet, Nnet expension
- SMART
 - Expect lower cost Share/incremental costs only, with telecom
 - Assume no wet maintenance for SMART part
 - Pick and choose which systems
 - Build up coverage over time

Howe et al., SMART Cables for Observing

Global Scenario

Telecom \$40k/km; SMART \$4k/km incremental above Steady state: 10 year cycle, 3 systems/y, \$175k/repeater \$20k/y/repeater, 0.16 Gm, 4x around world

Laid out in OceanObs19 community white paper)

the Global Ocean: Science and Implementation, Front. Mar. Sci., doi: 10.3389/fmars.2019.00424, 2019

Comments

- Be clear funding is largest challenge governments, MLDBs others?
- First modest projects just starting (next slides)
- Commercial challenges
- All suppliers say they can do it technically, just time and funds
- Need development of submarine qualified SMART repeater need "offthe-shelf" – start small/modest – wet demos and pilots
- Legal/permitting/security
- Approach start with countries that need SMART capability tsunami, earthquake, sea level, etc. Engaged governments. Access to Development Bank funds.

Systems under consideration

INGV – Italy – Sicily

- InSea Project
- Just funded 6/2019!
- Wet demo
 - Demo mechanical, science
 - -Test system on spur
 - -Attached to observatory
 - Possibly use recovered repeater housings/cable, SMART prototype

Gondwana-3, New Caledonia–Vanuatu

- Project SMART Cable Gondwana-3
- Backup cable: more flexible on risk and schedule
- Funding:
 - OPT Proposal to French government mid-2019 includes development
 - Additional funds to be requested by Vanuatu from ADB High-Level Technology Fund

Earthquake, tsunami, volcano Lifou - Port-Vila 1000 2000 Port-Vea Ê3000 nterchange Cable Network 1 (ICN) *4000* -60.00 -7000**SMART** Pilot **2 SMART repeaters** 300 km

Need sea level, disaster warning

New Tech: Optical fiber sensing

Interferometry

Challenge – calibration – point sensors Integral measurement – enough cables -> tomography?

- Measure strain across the oceans track phase(t)
- Depends on ultra stable lasers
- Connect clocks together via all optical links
- A global nervous system!
- Non-invasive uses a wavelength like any other
 Marra et al. Science, June 2018

Distributed acoustic sensing (DAS)

- Measure strain, to ~140 km
- Backscattered light, like sonar
- Dedicated fiber
- 500 Hz, 5 m resolution **Big data!**

DAS compared with nearby hydrophone

Land or water – seismic/acoustic sensing

Example - CAM: Portugal – Azores – Madeira

Fiber strain (backscatter, interferometer), sensors in repeaters, other wet sensors

 Exploring seismic and other kind of detections through submarine cables in CAM Zone

1755

- Smart, Green & Blue CAM Ring
- ANACOM, CIVISA, FCT, IPMA, IT, IVAR

Indonesia, ASEAN

- Need tsunami warning
- Also ocean/climate, ITF
- Need 20 year plan
- Phase next 10 20 years
- Pick and choose which

- Cost SMART essential to leverage telecom
- Reliable, achieve good coverage
- Encouraging telecoms
- Governments mandate SMART
- Include neighbors and international
- Cable based tsunami warning + ocean

Possibilities in Latin America and Caribbean

- Early Warning Tsunami and Earthquake
 IOC PTWS reports) (6) (2) (6) (2) (6) (2)
- Ocean, climate, El Niño, sea level
- InterAmerican Development Bank (IADB)
 - SMART "Two for the price of one"
 - Critical, Shared Infrastructure
 - Encouraging telecoms, permitting
 - Study group/Publication to support IADB funding for SMART cable systems
 - Latin Am Region considering connection to Asia (from Chile, ...Subtel Feasibility Study)
 - Improve inter-country connections
 - Also Antarctica oceanography In Drake amazing!

(Arctic Borealis, NORDUnet; Australia AARNet; CANARIE)

Outline

- Motivation
 - Climate
 - Disasters
- SMART cables
- R & E Networks
- Sharing infrastructure
- Concluding remarks

NRENs and RedCLARA

National Research and Education Networks (NRENs)

RedCLARA main services

- Provide advanced academic backbone connectivity for LAC NRENs
- Affiliated networks communicate with universities, research centers and the scientific community worldwide and partner institutions.
- Dedicated network, no congestion, non-commercial/independent, high QoS, low latency and secure transit
- Submarine cables (wavelengths) part of system

Summary: connectivity and communication

Examples Extremely Large Telescope under construction, 2025 ~40 m mirror

Large Synoptic Survey Telescope

EllaLink – RedCLARA and GEANT

RENs have bandwidth on such cables

Indefeasible Right of Use (IRU)

Sharing infrastructure

An opportunity for RENs?

Extend NRENS, RedCLARA to be a environmentally self-aware network a la a nervous system

- Help protect the network
- Scientific and societal benefits

Shared infrastructure

- multi-purpose
- dig once
- two for the price of one, save cost
- Fiber sensing
- Point sensors

In 1998, Bill St Arnaut, CANARIE, proposed combining academic internet, science, and native community connectivity in the Arctic

NREN CEO Forum?

IADB – Miami – Recommendations to Regulators

- Recommend Governments and other possible sponsors/banks should
 - Recognize telecom and SMART systems as critical infrastructure
 - Require disaster risk reduction elements in all critical infrastructure
 - Recognize that submarine cable systems are shared infrastructure and shall combine telecom and ocean observing/early warning capabilities
 - Implement procedures to streamline the consortium process in this context
- Latin America and Caribbean countries + banks can lead the adoption of SMART capability: utilize shared infrastructure, provide societal benefits

 better regional climate forecasts and tsunami and earthquake early warning capability.

Concluding Remarks - SMART

- Initiative in transition: concept → wet demo ✓ , pilots ✓
- UN organizations supporting SMART cables
- Indonesia toward SMART tsunami warning
- Development Banks (ADB, IADB) positive
- Need to encourage more Corporate Social Responsibility
- Need very early access to proposed systems smaller, government, development banks, need
- Common issue *FUNDING*

Concluding Remarks - RENs

- Climate monitoring and disaster mitigation are worthy topics for RedCLARA and NREN attention
- Research and Education Networks should play an active role
- And, they can player a larger role
- Consider their networks as infrastructure to be shared, for science and societal benefit
- Use their influence as infrastructure stakeholders to take advantage of the possibilities

SMART Cables

Gracias! Questions

JTF SMART Cable web page: <u>https://www.itu.int/en/ITU-T/climatechange/task-force-sc/Pages/default.aspx</u>

SMART Cables for Observing the Global Ocean: Science and Implementation https://www.frontiersin.org/articles/10.3389/fmars.2019.00424/full

